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Dynamical properties of the domain walls (DW’s) in the light beams propagating in nonlinear
optical fibers are considered. In the bimodal fiber, the DW, as it was recently demonstrated nu-
merically, separates two domains with different circular polarizations. This DW is found here in an
approximate analytical form. Next, it is demonstrated that the fiber’s twist gives rise to an effective
force driving the DW. The corresponding equation of motion is derived by means of the momentum-
balance analysis, which is a technically nontrivial problem in this context (in particular, an effective
mass of the DW proves to be negative). Since the sign of the twist-induced driving force depends
on the DW’s polarity, the DW’s with opposite polarities can collide, which leads to the formation
of their stable bound state. This is a domain of a certain circular polarization squeezed between
semi-infinite domains of another polarization. In the absence of the twist, the DW can be driven
by the Raman effect, but in this case the sign of the force does not depend on the DW’s polarity
and the bound state is not possible. Finally, a similar problem is considered for the dual-core fiber
(coupler). In this case, the DW is a dark soliton in one core in the presence of the homogeneous
field in the mate core. The dark soliton is driven by a force induced by the coupling with the mate
core. The bound state of two dark solitons also exists in this system. The effects considered may
find applications, e.g., for the optical storage of information.
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I. INTRODUCTION

The domain walls (DW’s) furnish the simplest type of a
stable defect in nonlinear patterns. Alongside the classi-
cal static DW’s in ferromagnets and aniferromagnets, the
study of the DW-like defects in dynamical nonlinear pat-
terns has recently attracted a great deal of attention [1-
7). The dynamical DW’s which seem most similar to the
classical static ones in the magnetic systems are the walls
between rolls with different orientations in the Rayleigh-
Bénard convection [1, 3], or between rolls and hexagons
(2, 3], or, at last, between the hexagons and the trivial
state below onset [3]. These DW’s may be regarded as
linear defects in two-dimensional nonlinear systems, al-
though they are actually given by solutions of effectively
one-dimensional coupled Ginzburg-Landau (GL) equa-
tions [2,3]. Similar solutions describe the DW’s which are
kinks (phase jumps) in purely one-dimensional systems,
e.g., in the GL equation with the parametric pumping
[5]. Finally, quiescent and moving kinks which separate
domains occupied by different stable phases (described,
e.g., by the quintic GL equation [4]) can also be regarded
as one-dimensional DW'’s.

Recently, study of the DW’s was started in systems of
coupled nonlinear Schrédinger (NLS) equations govern-
ing propagation of light in nonlinear optical fibers [6] and
nonlinear planar lightguides [7]. In these nonlinear op-
tical systems, the walls separate domains with different
circular polarization of light. While in the analysis devel-
oped in Ref. [6] the dispersion was neglected, it was taken
into account in Ref. [7]. In the latter work, two types of
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solutions of the coupled NLS equations were considered:
periodic arrays of the DW'’s and solitary walls. Although
the full dynamics described by coupled GL equations and
by coupled NLS equations are very different (dissipative
in the former case and conservative in the latter case),
their static solutions coincide. The same pertains to the
stability properties of those solutions. In particular, the
solitary DW considered in the context of the nonlinear
lightguides in Ref. [7] exactly coincides with a partic-
ular case of the solution found in Ref. [3] for the do-
main boundary between rolls with different orientations
in the convection patterns (periodic solutions, however,
were not considered in Ref. [3]). As another example of a
DW in nonlinear optical fibers, it is relevant to mention
the exact solution describing a full transformation of a
pump wave into the Stokes wave, obtained in the frame-
work of a system of NLS equations for the two waves
coupled by the Raman interaction [20].

The main objective of this work is to consider some
important properties of the polarization DW’s in non-
linear optical fibers. The analysis will be based on the
coupled NLS equations for the linear polarizations (while
in Ref. [7] the basic polarizations were circular). Two
additional important physical factors will be taken into
account, viz., the linear coupling which accounts for the
twist of the fiber and the Raman effect. In Sec. II it will
be demonstrated that, in the presence of the twist, which
will be treated as a small perturbation, usual static DW
solutions are not possible; instead, a stable bound state
of two DW’s with opposite polarities appears. It repre-
sents a finite domain with a certain circular polarization
sandwiched between semi-infinite domains of the oppo-
site circular polarization, which may be regarded as a
prediction of a dynamical state in the nonlinear optical
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fiber. The size of the intermediate domain is determined
by the twist rate, as well as by the background light
power. It will also be demonstrated that a solitary DW,
which cannot exist in a static state, moves like a mechan-
ical particle subjected to the action of a constant driving
force proportional to the twist. The law of motion for the
twist-driven DW will be derived by means of the known
technique based on the balance equation for the wave mo-
mentum. However, application of this technique to the
problem considered is not straightforward, so that some
nontrivial tricks will be used; in particular, an effective
mass of the DW proves to be negative. The prediction
of the twist-induced accelerated motion of the DW for-
mally resembles the effect well known in the single-mode
nonlinear optical fibers: the constant “acceleration” of a
soliton under the action of the intrapulse Raman scat-
tering [8]. In this work, influence of the Raman effect in
the bimodal fiber [9] will be briefly considered in Sec. III
and it will be shown that it also gives rise to an accelera-
tion of the DW (actually, this effect is physically relevant
only when the temporal width of the DW in the fiber is
very small, belonging to the subpicosecond region). An
important difference from the twist-induced acceleration
is that the sign of the “force” induced by the twist de-
pends upon the polarity of the DW, while the Raman
effect induces the force with a fixed sign. In particular,
the twist-driven DW’s with the opposite polarities can
collide, and their collision must give rise to formation of
the above-mentioned sandwich. These properties of the
DW'’s in the twisted fiber may find applications in de-
sign of nonlinear-optical logic elements; for instance, the
sandwich structure could be used for information storage.

Similar effects may take place in the directional cou-
pler, i.e., a system of parallel tunnel-coupled monomode
optical fibers (see the review paper [10]), which is con-
sidered in Sec. IV. In this system the coupling is purely
linear, and it plays a role which is formally similar to
that of the twist in the bimodal fiber. A structure of
the DW type in the coupler can be realized as a dark
soliton in one arm on the background of homogeneous
cw field in the other. This structure cannot exist as a
static solution, and, treating the coupling as a small per-
turbation, in section IV it will be shown by means of the
momentum-balance technique that the coupling with the
mate arm induces an effective force driving the dark soli-
ton, the sign of the force being determined by the dark
soliton’s polarity. The effective mass of the dark soliton
again proves to be negative. A pair of the dark solitons
may form a stable bound state similar to that described
above for the twisted bimodal fiber.

II. POLARIZATION DOMAINS
IN THE TWISTED OPTICAL FIBER

The interaction of two orthogonal linear polarizations
in the twisted nonlinear optical fiber is described by the
coupled NLS equations for the envelope functions u(z, 7)
and v(z,7) [11],

1
iu, + JUrr — (|u|2 + alv|2) u+kv =0, (1)
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1
v, + FUrT (lvl® + olul?)v+ru =0, (2)

where k is proportional to the fiber’s twist and the cou-
pling constant o is actually % (the rapidly oscillating
terms are, as usually, neglected). Note that the sign
in front of the nonlinear terms in Egs. (1) and (2) is
chosen so that the homogeneous field will be modula-
tionally stable [the modulationally stable NLS equations
are sometimes written with the opposite signs in front of
the dispersive and nonlinear terms as compared to Egs.
(1) and (2); however, it is evident that both forms of
the equations are equivalent]. It is well known [16] that
the nonlinear cross-phase modulation does not break the
modulational stability provided that o < 1, which is the
case to be considered in this work.

In order to strongly simplify the analysis, in what fol-
lows below heavy use will be made of the evident fact
that % is close to the value o = 1, at which the system
of Egs. (1) and (2) with x = 0 is the exactly integrable
Manakov’s system [12]. Moreover, it is known that the
system with ¢ = 1 and k # 0 can be reduced to the
Manakov’s form [13]. Therefore, it will be set

og=1—c¢, (3)

and ¢, actually equal %, will be treated as a formally small
parameter. It is known that using the small € strongly
simplifies consideration of dynamical [14] and static [3]
problems within the framework of the system of Egs. (1)
and (2). Note that an effective birefringence of the bi-
modal fiber in the absence of the twist is neglected in
Egs. (1) and (2). An effect of the birefringence will be
briefly discussed at the end of this section.

Static solutions to Egs. (1) and (2) are sought for in
the obvious form

u(z,7) = ePrztido U(r),

(4)

v(z,7) = eP2z—ido V(r),

where (3; and (3; are the propagation constants of the
two polarizations and ¢g is an arbitrary phase constant.
Actually, derivation of Egs. (1) and (2) from Maxwell’s
equations assumes that the difference 8; — 2 must be
small [17]. In this work, attention will be focused on
the case of the equal propagation constants; the case
of slightly different 8; and (3. will be considered briefly.
Next, insertion of Egs. (4) into Egs. (1) and (2) leads to
a system of two ordinary differential equations (ODE’s)
for U(7) and V(7) which, apart from the terms propor-
tional to k, has exactly the same form as in Ref. [3],
where it was derived for description of the DW’s in the
Rayleigh-Bénard convection. As it was demonstrated in
that work, it is sufficient to consider the case when the
amplitudes U and V are real, and then the system of the
ODE'’s takes the form of equations of motion for a me-
chanical particle with two degrees of freedom U and V
and with the Hamiltonian
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where € is the formal small parameter defined by Eq.
(3). At € = 0 and k = 0, the Hamiltonian (5) is rota-
tionally symmetric on the plane (U, V) (i.e., it conserves
the angular momentum). Therefore, to treat the terms
breaking the rotational symmetry as small perturbations,
it is natural to introduce the polar coordinates p and x
as follows [3]:

U=pcosy, V=psiny. (6)

In the zeroth approximation, i.e., at ¢ = 0, and also
with 8; = B2 = (, the only possible solution is x = const,
p = const = pg, so that 3 = —p2. The next step is
to consider the effect of small ¢, still keeping « = 0.
Following the lines of the analysis developed in Ref. [3],
it is easy to demonstrate that, in the lowest nontrivial
approximation, one obtains an equation for the angular
variable x(7), simply freezing the radial variable in the
Hamiltonian (5), i.e., setting there p = po. Subsequent
elementary consideration of the resultant equation for x
[3] yields the solution corresponding to the DW:

x(1) = iw —tan~! [exp(—sy/epoT)] , (7

where s = *1 is the polarity of the DW. Obviously, equiv-
alent DW solutions can be obtained from Eq. (7) by the
shift

X(7) = X(r) + 37 ®)

with an arbitrary integer n. At the next order of the
formal expansion in powers of /€, one can easily obtain
a correction to pg:

(2p0) ™" [(%)2 - %EPS cosz@x)]

et (2, ®

where the particular form of the solution (7) has been
used.

The solution (7) connects the asymptotic values of
the angular variable x(r = —o0) = —1x and x(r =
+00) = +1im. Coming back to Eq. (6), one notices
that U%(r = oo) = V%(r = %o0), and the funda-
mental property of the corresponding DW is changing
the sign of one component V' while keeping the sign of
the other component U fixed. The DW solution gener-
ated by the transformation (8) with odd n changes the
sign of U, while the sign of V is kept fixed. The homo-
geneous phases with U = %V correspond to the linear
combinations of the orthogonal linear polarizations, i.e.,
the elliptic polarizations [the ellipticity is determined by
the arbitrary phase constant ¢ in Egs. (4)]. Thus the
DW separates two elliptic polarizations with the rela-

|

p1(T)

tive phase difference Ax = 7. As a matter of fact, this
exactly corresponds to the DW solution recently found
numerically in Ref. [7] directly in terms of the circular
basic polarizations.

If the propagation constants in Eqs. (4) are slightly
different, i.e., 81,2 = B+ v with |y| < |8|, the analy-
sis based on the Hamiltonian (5) reveals that the small
parameter v introduces an asymmetry between the solu-
tions corresponding to even and odd n in Eq. (8). At
n = 0, the solution modified by a small v # 0 connects
the asymptotic values x(+o00) = £[% —v(ep3) '], so that
the phase difference across the DW’s with even values of

s T 2\ —1 o e o s
n is now 3 — 2y (epo) . Similarly, it is easy to find
that the phase difference across the DW’s with odd n is
7 +2y (epg)_l.

Really interesting results can be obtained when the
twist is included. First of ali, the analysis of the Hamil-
tonian (5) with x # 0 shows that the stationary solutions
considered above, with the phase difference Ax = 7, no
longer exist. Instead, a stationary solution with Ax =7
appears. In the case of small k, the solution can be re-
garded as a bound state of two former solutions, with
even and odd n. Actually, in this case the Hamiltonian
(5) (with p frozen and with 8, = B;) coincides with that
of the known double sine-Gordon (DSG) model (see the
review paper [15]). In particular, the stationary solution
in the form of the bound state corresponds to the well-
known 4w-kink static solution of the DSG model. In the
case when k is small enough, the separation A7 between
two DW’s in the bound state can be easily found using
the well-known results for the DSG model [15]:

AT =~ (\/Epo)—lln (rcpg)_l . (10)

In the presence of the twist, the usual DW does not
exist as a stationary solution because the twist breaks
the symmetry between the two different elliptic polar-
izations separated by the DW. One of the polarizations
gets a larger Hamiltonian density than another; hence it
cannot exist as a stable homogeneous phase. However,
a sandwich in the form of a domain of the “bad” po-
larization squeezed between semi-infinite domains of the
“good” polarization can exist and be stable, and this is
exactly the bound state of the two DW’s described above.
Note that the temporal width of the sandwich, given by
Eq. (10), is determined by the background power of the
light beam (i.e., p3) and by the twist parameter x. Thus
it should be easy to control the width in experiments
with the fibers.

Coming back to the solitary DW, an interesting prob-
lem is to consider its actual dynamics in the presence of
the twist. Although the DW cannot exist in the station-
ary state, one may expect that it may exist moving with
a constant acceleration, like the soliton in the monomode
fiber “accelerated” by the intrapulse Raman effect [8] or
like the 27 kink in the DSG model [15]. However, a
full solution of this problem cannot be borrowed from
the DSG model and it should be found directly in the
framework of Eqgs. (1) and (2). The simplest approach
is based on the so-called balance equation for the wave
momentum of the system,
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+oo
P = z/ (uuy + vv})dr, (11)
—o0

the asterisk standing for the complex conjugation. Differ-
entiating the expression (11) in the evolutional variable
z and directly using Egs. (1) and (2), one obtains

% = —k(u'v+uw*) |IZF2 . (12)

T=—00
Equation (12) demonstrates that, if the expression on its
right-hand side vanishes, the momentum is an integral of
motion (in particular, this is true if the wave fields vanish
at infinity). However, for the DW solution (7) the right-
hand side of Eq. (12) does not vanish, and one eventually
obtains
dP
dz
(remember that s is the polarity of the DW). As a matter
of fact, Eq. (13) gives an effective driving force applied
to the DW.

To make use of Eq. (13), it is necessary to know the
momentum of the DW. However, inserting Egs. (4) with
U and V real into Eq. (7), one immediately obtains zero.
To obtain a nontrivial result, the accelerated DW will be
sought for in the form [cf. Egs. (4)]

u(z,7) = a(1 — 10(2)) exp {iBz + id(7 — 710(2)) } ,

= —2sKkp2 (13)

(14)

v(z,7) = b(T — 10(2)) exp {iBz + iY(7 — 10(2))} , (15)

where the amplitudes a and b and the phases ¢ and ¢
are real, 79(2) being the temporal coordinate of the DW
regarded as a function of the evolutional variable z. Note
that the “velocity” of the DW, ‘—%’, as well as the depen-
dence of the phases upon 7 are produced by the small
perturbation (twist). Therefore, dT’;Q and derivatives of
the phases will be regarded as small quantities. Then,
inserting Eq. (14) into Eq. (1) and collecting the small
terms (they all contain an extra factor ¢ in comparison
with the usual nonsmall terms), one obtains an equation
which, on multiplying it by a, can be conveniently repre-
sented in the form of a full derivative:

d dTo 2 2d¢

— | —— — ) =0. 16

dr ( dz ¢ ta dr (16)
Integrating Eq. (16) yields

_%Iz(la? +a2% = const. (17)

The arbitrary constant of integration in Eq. (17) must
be chosen so that to comply with vanishing of %‘f at
infinity, where one has the homogeneous wave fields,
a2, where ay is the value of the amplitude at
infinity, obviously related to the amplitude po introduced

above: a2 = % p?. Eventually, one obtains

do drg (1
299 _ _GTo (1 2 2
*ar dz (2[)0 . ) (18)

Quite similarly, one obtains from Egs. (15) and (2) the

relation
d drg (1
bzg - _7;1 (Ep%—bz) . (19)

Finally, Egs. (14), (15), (18), and (19) should be inserted
into Eq. (11) to produce the following expression for the
momentum of the DW:

+oo
P = dT"/ (2 — a® — b?) dr

Tdz o
dr +oo
= —d—; (pa — p?) dr, (20)

where the identity a? + b2 = p? was used [cf. Egs. (4),
(6), (14), and (15)].

As one sees from Eq. (20), the DW’s momentum com-
bines two small factors: the “velocity” %”f and the small
deviation of p from po determined by Eq. (9). Finally,
inserting Eq. (9) into Eq. (21), one obtains

1 dTO
P = —E\/EPOE—Z—- (21)

It is noteworthy that, according to Eq. (21), the effec-
tive “mass” of the DW, defined as the proportionality
coefficient between the momentum and the “velocity,”
is negative. For comparison, if one considers the mo-
mentum density of the homogeneous cw solution, it is
straightforward to find out that the same definition (11)
of the momentum yields a positive mass density of the
homogeneous wave, so that the minus sign in Eq. (21)
is not produced merely by an irrelevant definition. Ac-
tually, the negative mass is related to the fact that one
is dealing not with a solitary wave but with a localized
wave on the background of the cw solution.

The equation of motion sought for can now be obtained
by substituting Eq. (21) into the left-hand side of Eq.
(13), which eventually yields

i 4se V2 py . (22)
Formally, Eq. (22) is the equation of motion for a clas-
sical particle driven by a constant force. It is similar to
the well-known equation of motion for the Raman-driven
soliton in the monomode fiber [8]. However, in that case
the sign of the “acceleration” is fixed, as the intrapulse
Raman scattering gives rise to the downshift of the soli-
ton, but not to its upshift, while in the present case the
signs are different for s = £1. In applications, the DW’s
law of motion (22) can be controlled by means of the
background amplitude po or by changing the twist.

Since the direction of motion is different for the op-
posite polarities, collisions between DW’s are possible.
Although a full analysis of the collision may be compli-
cated, it seems evident that the collision must result in
the formation of the bound state of the two DW’s de-
scribed above.

As it was said above, the underlying equations (1) and
(2) did not take into account the effective birefringence
of the linear polarizations. This effect is accounted for
by the additional terms Qu + idu, and —Qv — idv, in
Egs. (1) and (2), respectively, where Q and § are pro-
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portional to the birefringence-induced phase velocity and
group velocity differences between the two linear polar-
izations [17]. Obviously, these terms can be excluded
by the transformation u — u exp [—i67 + i(Q + 362)z],
v — v exp [i67 + i(—Q + 36%)z], which, however, adds
the oscillating multipliers exp [£2i(d7 — Qz)] to the for-
mer constant k. Looking at this additional multiplier,
one infers that the influence of the birefringence is neg-
ligible if the corresponding temporal and spatial beat-
ing scales 6~ and Q™! are large in comparison, respec-
tively, with the characteristic temporal size of the DW (7)
and with the length of the system; otherwise, the bire-
fringence will strongly attenuate the effects considered
above.

To conclude this section, it is relevant to note that the
analysis can be easily extended to the case ¢ < 0, or,
according to Eq. (3), 0 > 1 in Egs. (1) and (2). Actu-
ally, the case of physical interest is o = 2, i.e., € = —1,
which corresponds to interaction of two circular polariza-
tions or of two waves with different carrier wavelengths.
This value of €, unlike the value € = % dealt with above,
can scarcely be treated as a small parameter. Never-
theless, it may be relevant to discuss at least qualitative
results which follow from the Hamiltonian (5) with e < 0
and with p frozen. In the system of two coupled circu-
lar polarizations, the terms in the effective Hamiltonian
(5) proportional to the coefficients 8; — 32 and  have
physical meaning different from that in the system of the
coupled linear polarizations. The former term accounts
for the effective birefringence of the circular polarizations
which is produced by the twist; the latter term accounts
for the linear coupling between the two circular polariza-
tions produced, in the absence of the twist, by the bire-
fringence of the corresponding linear polarizations [11].
Then, it is easy to see that, at € < 0, the term propor-
tional to B; — B2 in the Hamiltonian (5) gives rise to an
effective constant force moving the DW, while the term
proportional to « introduces a discrimination between the
DW'’s corresponding to even and odd n in Eq. (8), but
does not make them to move. With regard to the above-
mentioned meaning of the parameters 8; — B2 and « at
€ < 0, it is evident that these qualitative results comply
with those obtained above in the quantitative form for
the linear polarizations, as well as with the numerical re-
sults for the system of the coupled circular polarizations
reported in Ref. [7].

III. THE RAMAN-DRIVEN
OPTICAL DOMAIN WALL

In this section, Egs. (1) and (2) without the twist-
induced linear coupling but with additional terms ac-
counting for the stimulated Raman scattering in the
bimodal fiber will be considered. In the simplest ap-
proximation based on the assumption of the quasi-
instantaneous response of the medium [9], the corre-
sponding equations take the form [9]

. . 1
u, + i0u, + Furr — (lul® + olv|?)

=)\ (|u|2)1_ u+ A (|v|2)1_ u+ Az (wv*), v, (23)

. . 1
v, —10v, + VT~ (|v|2 + U|u|2)

=) (|v|2)1_ v+ A2 (|u|2)r v+ Az (vu®) u, (24)

where é is the same birefringence coefficient as in the
preceding section. Note that, since the twist is not con-
sidered in this section, the other birefringence coefficient
Q can always be excluded from Egs. (23) and (24). The
coupling constant 0 = 1 — ¢ is again % Finally, the par-
allel and perpendicular Raman coefficients A\; and A, 3 in
Egs. (23) and (24) are always related by the fundamental
equation following from the isotropy of nonlinearity and
reality of polarizability in the optical medium [9]:

A1 = A2+ A3 (25)

An effective equation of motion for the DW (7), with
the Raman terms (and the birefringence term) regarded
as small perturbations, can be again derived from the
momentum balance. First of all, it is convenient to ex-
clude the birefringence term from Eqgs. (23) and (24) by
means of the transformation

u(t,z) = U(1,2) exp (—i&‘r + %i&zz) s (26)

v(1,2) = V(1,2) exp (+i5‘r + %i&zz) ,

which leads to equations for U and V similar to Egs.
(23) and (24), but without the birefingence terms and
with the additional terms, respectively, —2idA3|V|2U and
+2i6A3|U|?V on the right-hand sides. Finally, differenti-
ating the momentum (11) in z and taking into account
all the Raman terms, one can obtain a general expres-
sion for %; cf. Eq. (12). To further simplify this ex-
pression, note that, in the lowest approximation, one can
take purely real U and V, as it was done in the preceding
section when deriving Eq. (13). Thus one obtains

dz

T = [ a2 (@ + 70
+2X2(U?),(V?), + 2X3(UV)2 }dr. (27)

The relation (25) was used to exclude A; from Eq. (21).
Next, inserting the representation (6) into Eq. (27), and
then using the DW solution (7) with p frozen (p = py), it
is easy to obtain the eventual expression for the effective
force driving the DW:

dpP 4
dz = 5\/2)\3103 : (28)
Notice that only the coefficient A3, which is the single
one accounting for the Raman-induced energy transfer
between the two polarizations [9], shows up in Eq. (28).
In the approximation considered, one can take for the
DW'’s momentum, regarded as a function of the velocity
%‘1, the same expression (21) which was used in the pre-
ceding section. The eventual equation of motion for the
DW, which follows from Egs. (28) and (21), is

d2T0
dz2

8
= —5,\3,;3. (29)
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This equation is quite similar to that describing the mo-
tion of the soliton in the single-mode fiber in the presence
of the Raman effect [8]. Note that, unlike Eq. (22), the
sign of the right-hand side of Eq. (29) does not depend
on the DW’s polarity, as this sign is actually fixed by the
physical condition that the Raman scattering transfers
energy to longer wavelengths [8]. An important conse-
quence of this is the fact that the DW’s driven by the
Raman force do not collide, and, accordingly, their “sand-
wichlike” bound state does not exist. It is also worthy to
note that the Raman-induced force driving the DW can
be easily compensated by the twist of the proper sign.

IV. DARK SOLITONS
IN THE DIRECTIONAL COUPLER

The simplest model of the directional coupler, i.e., a
dual-core optical fiber, is based on the following coupled
NLS equations [10]:

1
u, + Eu” — |u|2u +kv =0, (30)
. 1 2
w, + Ev” —|v|*v+Kku =0, (31)

where this time k is the coefficient of the tunnel cou-
pling between the two cores. As well as in the preceding
sections, the choice of the signs in Eqgs. (30) and (31)
corresponds to the fibers with the normal dispersion, so
that stable dark solitons (DS’s) (see the review [18]) can
exist in each core in absence of the coupling. The corre-
sponding solution is [18]

u = poexp (—ipgz) tanh(spoT), (32)

where s = 1 is the polarity of the DS and po is the
background field amplitude.

In the presence of the coupling, the DS or a solution
close in form to it cannot exist. Actually, the field config-
uration consisting of the DS in one core and the homoge-
neous field in the second core is another example of the
optical DW driven by an effective constant force. Indeed,
differentiating the momentum (11) in z and substituting
Egs. (30) and (31), one obtains for 2£ exactly the same
expression (12) which was already obtained above. Next,
it immediately follows from Egs. (30) and (31) that, at
T — oo (i.e., far from the location of the DS), the wave
fields in the two cores must be related as follows: u = +w.
For the definiteness, in what follows the upper sign in
this relation will be taken at 7 = +oo. Then, the ef-
fective force driving the DS in the first core due to its
interaction with the homogeneous (7-independent) field
in the second core can be obtained from Eq. (12) in the
form

dP
—7 = —4spgK; (33)
cf. Eq. (13). To find the momentum of the “slowly

moving” DS, one can again use Eq. (20), with p(7) sub-
stituted, according to Eq. (32), by potanh(spo7). An
elementary calculation yields [cf. Eq. (21)]

dTg

=, (34)

P = —2pg

Note that the effective mass corresponding to Eq. (34) is
negative, as well as that in Eq. (21). Finally, the DW’s
law of motion following from Egs. (34) and (35) is

dz'r 0

dz?
cf. Egs. (22) and (29). As it follows from Eq. (35),
one can easily control the effect varying the background
amplitude po.

Since the DS’s with the opposite polarities move in the
opposite directions according to Eq. (35), they may col-
lide. The collision will lead to formation of a bound state
of the DS’s. Indeed, it is well known that two DS’s in the
single-core fiber repel each other [19], the repulsion force
being ~ exp(—2poAT), where A7 is the temporal sepa-
ration between the DS’s. Combining this force and that
given by Eq. (35), it is easy to find, with the logarithmic
accuracy [i.e., when In(poA7) is a large quantity], that
the pair of the DS’s belonging to the same core of the
coupler form a stable bound state with the separation
between them

= 20poK; (35)

AT = %pE 'n(kpg) 7t (36)
cf. Eq. (10). Following Sec. II, one can can consider this
bound state as a sandwich, with the sign of the u field in
the inner domain opposite to that in the outer domains.
Contrary to this, the difference of values of the v field in
the inner and outer domains is a small quantity ~ .

V. CONCLUSION

In this work, domain walls in the light beams propa-
gating in nonlinear optical fibers were considered. Two
particular types of the DW were dealt with: the one
between different circular (or, strictly speaking, elliptic)
polarizations in the bimodal fiber and a dark soliton in
one core of the dual-core coupler. A salient feature of
both types of the DW’s is the existence of a fundamental
“force” which makes them to move: the fiber’s twist in
the former case or the interaction with the mate core in
the latter case. The sign of this effective force depends
upon the DW’s polarity. In absence of the twist, the
Raman effect can also give rise to an effective force driv-
ing the DW in the bimodal fiber, which, however, does
not depend upon the polarity. In all the cases, an ef-
fective equation of motion of the driven DW was derived
by means of the momentum-balance technique which was
a nontrivial problem in itself, its noteworthy peculiarity
being the negative effective mass of the DW. Pairs of the
DW’s with the opposite polarities, driven by the twist
in the bimodal fiber or by the interaction with the mate
core in the coupler, may collide and form stable bound
states. These bound states are “sandwiches,” with a do-
main of a certain phase squeezed between semi-infinite
domains of another phase. In principle, the sandwiches
may find a practical application, e.g., for the optical stor-



age and transfer of information. The temporal width of
the sandwiches was calculated in this work in the loga-
rithmic approximation. It can be easily controlled using
the background amplitude of the light beam or, e.g., the
fiber’s twist.

Finally, it is relevant to mention that, although the
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consideration in this work was accomplished in terms of
the nonlinear optical fibers, some of the results can be
reformulated in terms of the nonlinear planar lightguides
(see, e.g., Ref. [7]), i.e., in the spatial domain instead
of the temporal one. However, the nonlinear fibers seem
more promising for possible experiments.
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